
ACM Communications in Computer Algebra, Vol.xx, No.xx, Issue xxx, month 201x

Computing generic bivariate Gröbner bases with Mathemagix

Robin Larrieu

Laboratoire d’informatique de l’École polytechnique
LIX, UMR 7161 CNRS

1, rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
larrieu@lix.polytechnique.fr

Abstract

Let A,B ∈ K[X,Y] be two bivariate polynomials over an effective field K, and let G be the reduced
Gröbner basis of the ideal I := 〈A,B〉 generated by A and B with respect to the usual degree lexico-
graphic order. Assuming A and B sufficiently generic, G admits a so-called concise representation that
helps computing normal forms more efficiently [7]. Actually, given this concise representation, a poly-
nomial P ∈ K[X,Y] can be reduced modulo G with quasi-optimal complexity (in terms of the size of
the input A,B, P). Moreover, the concise representation can be computed from the input A,B with
quasi-optimal complexity as well. The present paper reports on an efficient implementation for these
two tasks in the free software Mathemagix [10]. This implementation is included in Mathemagix as
a library called larrix.

1 Introduction

In the past year, some attention was drawn to generic bivariate polynomials, whose structure led to several
new complexity results:

• on polynomial reduction, by van der Hoeven and Larrieu [8, 7].

• on the resultant, by Villard [12], and later by van der Hoeven and Lecerf [9];

A natural question with such theoretical results is whether they can be used in practical implementations.
In this paper, we focus on polynomial reduction, and more specifically on the results from [7]: here input
polynomials are generic and dense for the total degree order. In this very particular setting, we show that
the new ideas can be turned into competitive software.

Let A,B ∈ K[X,Y] be two bivariate polynomials over an effective field K, and I := 〈A,B〉 be the
ideal they generate. If one wants to compute in the quotient algebra A := K[X,Y]/I, a solution is to first
compute a Gröbner basis of I, then one can reduce any polynomial to some normal form (which is unique
by definition of a Gröbner basis). References on the computation of such bases are Faugère’s algorithms
F4 and F5 [4, 3], and his FGb software [5].

A first remark is about the size of these objects. If A and B have degree n, they have Θ(n2) coefficients,
and the algebra A has dimension n2 generically. However, the Gröbner basis G has generically n+1 elements
G0, . . . , Gn with Θ(n2) coefficients each. A priori, computing Gröbner bases and normal forms requires
then at least Θ(n3) operations, simply because of the size of equation

P = Q0G0 + Q1G1 + · · ·+ QnGn + R. (1)

In fact, using a more compact representation of G, a quasi-optimal complexity Õ(n2) can be achieved [7].

1

Computing generic bivariate Gröbner bases with Mathemagix ISSAC 2019 abstracts

2 Idea of the algorithm

The purpose of this section is to briefly recall the results from [7] (refer to this for details).

2.1 Key ingredients

The first idea is to use a dichotomic selection strategy to control the degrees of the quotients. A selection
strategy describes how one chooses against which basis element a given term is reduced. In the dichotomic
selection strategy, each monomial is reduced preferably against one end of the Gröbner basis (G0 or Gn),
or the Gi where i has the highest 2-adic valuation. This way, most quotients have a very small degree:
roughly speaking, there are n/2 quotients of degree d, plus n/4 quotients of degree 2d, plus n/8 quotients
of degree 4d, and so on, where d is a constant independent of n.

This allows for a second ingredient that is to keep only sufficiently many leading terms of each Gi. The
definition of “sufficiently many” depends on the degree of the quotient Qi. For example, G0 and Gn have
to be known entirely as Q0 and Qn can have very large degree; but on the other hand, for the n/2 indices i
such that deg(Qi) = d, it suffices to know the (approximately) nd leading terms of Gi.

Knowing Gi with this precision is sufficient to compute the quotient Qi, but not the remainder R. The
third idea is to keep track of the relations that exist between G0, . . . , Gn. Using these relations, equation (1)
can be symbolically rewritten to use fewer terms, so that the remainder can be evaluated with the expected
complexity.

The later two ingredients lead to a so-called concise representation for the Gröbner basis. This rep-
resentation consists of the basis elements truncated to the appropriate precision (ingredient 2), and the
collection of some well-chosen relations (ingredient 3). The whole representation requires only Õ(n2) space.

2.2 Algorithms

Concise representation. Let us run Buchberger’s algorithm [1] from input A,B. Starting from G0 := A
and G1 := B rem A, we set Gi+2 := Spol(Gi, Gi+1) rem (G0, . . . , Gi+1). For generic A,B, we have
lm(G0) = Y n and lm(Gi) = X2i−1Y n−i for i > 1. In particular, lm(Gn) = X2n−1, and the Gröbner basis is
complete once Gn is reached because of the Bezout bound (there are n2 monomials under the Gröbner stairs
at this point). This procedure can be improved by setting simply Gi+2 := Spol(Gi, Gi+1) rem (Gi, Gi+1),
or in matrix form (

Gi+1

Gi+2

)
= Mi

(
Gi

Gi+1

)
,

indeed we notice that the leading monomials are the same with this new formula. It turns out that the
matrix Mi depends only on the terms of degree deg(Gi) of Gi, and on the terms of degree deg(Gi+1) of Gi+1.
More precisely, obtaining M0,M1, . . . ,Mn−2 essentially boils down to a univariate GCD computation for
the dominant diagonals of A and B (with diag(A) :=

∑
i an−i,iZ

i ∈ K[Z]). Elementary linear algebra then
gives matrices Mi,k such that (

Gi+k

Gi+k+1

)
= Mi,k

(
Gi

Gi+1

)
.

These matrices allow to compute the truncated basis elements G#
i by decreasing precision: for example

if n = 8, start with G#
0 , G

#
1 , then compute G#

8 , then G#
4 , G

#
5 and finally G#

2 , G
#
3 and G#

6 , G
#
7 . With this

algorithm, the concise representation is computed in Õ(n2) operations.

Normal forms. Consider first the naive reduction algorithm: start with Q0 = · · · = Qn = R = 0; then
reduce the leading term of P −

∑
iQiGi − R and update the quotients or remainder accordingly at each

step, until P −
∑

iQiGi −R = 0. A first improvement is to evaluate the formula P −
∑

iQiGi −R using
fast series arithmetic as in [6]; this ensures quasi-linear complexity with respect to the size of equation (1).

2

Robin Larrieu

To reduce the size of this formula, we use the truncated elements G#
i from the previous subsection, and we

rewrite progressively the equation to maintain sufficient precision. Roughly speaking, as soon as a quotient
Qi is known, the term QiGi is replaced by an equivalent SkGk + Sk+1Gk+1 for a well-chosen k. With this
algorithm, the normal form of P is computed in Õ(n2 + d2) operations, where d := deg(P).

3 Experimental results

The above algorithms were implemented in the Mathemagix software [10], whose source code can be down-
loaded from svn://scm.gforge.inria.fr/svnroot/mmx/. The implementation of the bivariate Gröbner
basis and normal form algorithms is gathered in the package larrix. All timings were measured on a plat-
form equipped with an Intel(R) Core(TM) i7-6700 CPU at 3.40 GHz and 32 GB of 2133 MHz DDR4
memory.

We compare the Mathemagix implementation of our algorithms with the equivalent functionalities
in FGb [5] (Gröbner basis) and SageMath [11] (Gröbner basis and normal form)1. The benchmarks are
done using the svn revision 10718 of Mathemagix, FGb/modp version 14538 and SageMath version 8.0;
in each case the program uses a single thread.

We run the following experiment (file bench/ggg bench.cpp, or bench/ggg FGb bench.cpp for FGb,
or bench/ggg sage bench.sage for Sage):

• pick random bivariate polynomials A,B of degree n with coefficients in the prime field Z/65521Z.
This field is sufficiently large so that random elements satisfy the genericity assumptions with very
high probability.

• compute a Gröbner basis G in concise representation with our algorithm and measure the time needed
for this task. If the genericity hypothesis is not satisfied, this can be detected at this point and the
computation fails (but it does not happen in practice).

• pick a random polynomial P of degree 2n, compute its normal form with respect to G and measure
the time needed for this task.

The results are given in Figure 1 (a solid line represents the Gröbner basis computation, and a dashed
line represents the reduction in normal form). We observe that our implementation becomes faster than the
others for degrees as low as 20. For larger degrees, the speedup becomes really significant: for n = 200, the
Mathemagix implementation computes the concise representation in 188ms and the normal form in 1.4s,
while FGb and Sage need around 30s for each task.

50 100 150 200

10

20

30

n

ti
m

e
(s

) FGb

Sage/Singular
Mathemagix

Figure 1: Comparison of the Mathemagix implementation with other software

To find out the most computationally expensive subtasks in our algorithm, we run the experiment
for n the order of a few thousand and we measure the time needed for each part. (Let us mention that

1Let us mention that SageMath relies on Singular [2] as a backend for multivariate polynomials.

3

Computing generic bivariate Gröbner bases with Mathemagix ISSAC 2019 abstracts

for n = 1000, FGb ran for 28 hours before running out of memory.) For the concise representation, we
see that computing the truncated basis (matrix-vector products of bivariate polynomials) represent more
than 99% of the time. For the normal form, evaluating the formula P−

∑
iQiGi−R using series arithmetic

takes about 80-85% of the time, and the substitutions represents 14-18%.

degree n 1000 2000 4000

Truncated basis (s) 10.2 55.6 310
Total concise repr. (s) 10.3 56.0 312

Relaxed products (s) 74.4 447 2603
Substitutions (s) 16.3 83 422
Total normal form (s) 91.9 535 3046

References

[1] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem
nulldimensionalen Polynomideal. PhD thesis, Universitat Innsbruck, Austria, 1965.

[2] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. Singular 4-1-0 — A computer
algebra system for polynomial computations. http://www.singular.uni-kl.de, 2017.

[3] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
In Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ISSAC ’02, pages
75–83, New York, NY, USA, 2002. ACM.

[4] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied
Algebra, 139(1–3):61 – 88, 1999.

[5] Jean-Charles Faugère. FGb: A Library for Computing Gröbner Bases. In K. Fukuda, J. van der Hoeven,
M. Joswig, and N. Takayama, editors, Mathematical Software - ICMS 2010, volume 6327 of Lecture Notes in
Computer Science, pages 84–87, Berlin, Heidelberg, September 2010. Springer Berlin / Heidelberg.

[6] Joris van der Hoeven. On the complexity of polynomial reduction. In I. Kotsireas and E. Mart́ınez-Moro, editors,
Proceedings of Applications of Computer Algebra 2015, volume 198 of Springer Proceedings in Mathematics and
Statistics, pages 447–458, Cham, 2015. Springer.

[7] Joris van der Hoeven and Robin Larrieu. Fast Gröbner basis computation and polynomial reduction for generic
bivariate ideals. Technical report, HAL, 2018. http://hal.archives-ouvertes.fr/hal-01770408, accepted
for publication in AAECC.

[8] Joris van der Hoeven and Robin Larrieu. Fast reduction of bivariate polynomials with respect to sufficiently
regular gröbner bases. In Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic
Computation, ISSAC ’18, pages 199–206, New York, NY, USA, 2018. ACM.

[9] Joris van der Hoeven and Grégoire Lecerf. Fast computation of generic bivariate resultants. Technical report,
HAL, 2019. http://hal.archives-ouvertes.fr/hal-02080426.

[10] Joris van der Hoeven, Grégoire Lecerf, Bernard Mourrain, et al. Mathemagix, from 2002. http://www.

mathemagix.org.

[11] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.0), 2017. https://www.

sagemath.org.

[12] Gilles Villard. On computing the resultant of generic bivariate polynomials. In Proceedings of the 2018 ACM
International Symposium on Symbolic and Algebraic Computation, ISSAC ’18, pages 391–398, New York, NY,
USA, 2018. ACM.

4

